In ΔABC, AB = AC. Find x in each of the following.
Answers
Answer:
a) in triangle ABC ,
B=C=x
A+B+C=180
50+x+x=180
50+2x=180
2x=180-50=130
x=130/2=65
b)in triangle ABC,
B=C due to AB=AC,
A+B+C=180
x+65+65=180
x+130=180
x=180-130=50
c)in triangle ABC,
B=C due to AB=AC,
A+B+C=180
40+2B=180
2B=180-40=140
B=C=70
ABD is outer angle so ,
ABD=A+C
x=40+70=110
Answer:
1. angle A = 50
B = C (isoceles triangle)
B = x
let C be y
By angle sum property:
50+x+y=180
x + y = 180- 50
x + y = 130
B = 130
C = 130
2. A = x
B = C (isoceles triangle)
B = C = 65
By angle sum property:
x + 65 + 65 = 180
x + 130 = 180
x = 180-130
x = 50
Therefore, A = 50.
3. A = 40
let B be x.
C be y.
B = C (isoceles triangle)
By angle sum property
40+x+y = 180
x+y = 180-40
x+y = 140
Therefore, B=x=140
C=y= 140
linear pair,
x+B=180
x+140=180
x=180-140
x=40.
Hope it's helpful