In ∆ABC , AB²+ BC²= AC2²
and in ∆PQR , AngleQ = 90°
and AB = PQ , BC = QR .
Prove: Angle B=90°.
Answers
Answer:
In triangle ABC and triangle PQR,we have
BC=QR......................................................1
angleA=90°
angleC=angleR=40°...............................2
and angleQ=50°
In triangle PQR by angle sum property we have,
angleP+angleQ+angleR=180°
anglep+50°+40°=180° (by eq2)
angleP=90°=angleA...........................3
In triangleABC by angle sum property we have,
angleA+angleC+angleB=180
90°+40°+angleB=180
angleB=50°=angleQ...........................4
By eq1,eq3,eq4 we get,
tringleABC congruent to triangle PQR by
ASA criterion rule i.e angle side angle.
Step-by-step explanation:
Answer:
In triangle ABC and triangle PQR,we have
BC=QR......................................................1
angleA=90°
angleC=angleR=40°...............................2
and angleQ=50°
In triangle PQR by angle sum property we have,
angleP+angleQ+angleR=180°
anglep+50°+40°=180° (by eq2)
angleP=90°=angleA...........................3
In triangleABC by angle sum property we have,
angleA+angleC+angleB=180
90°+40°+angleB=180
angleB=50°=angleQ...........................4
By eq1,eq3,eq4 we get,
tringleABC congruent to triangle PQR by
ASA criterion rule i.e angle side angle.