In △ABC, ∠ACB = 90°, seg CD ⊥seg AB.
seg DE ⊥ seg CB.
Show that : CD × AC = AD × AB × DE
In △ABC,
∠ACB = 90°
seg CD ⊥ seg AB ... (Given)
∴ CD = _____ ... (1) (Geometric mean property)
In △DEB and △ACB ∠DEB ≅ ∠ACB ... (Each angle is 90°)
∠B ≅ ∠B ... _____
∴ △DEB ~ △ACB ... (A-A test of similarity)
∴ DE
AC
= _____ ... (c.s.s.t)
∴ DE × AB = _____
∴ AD × DE × AB = _____ (Multiplying both sides by AD)
_____ = CD × AC [from (1)]
i.e. CD × AC = AD × AB × DE
Answers
Answered by
8
Answer:
pleaseeeeeeeeeee make me a brilliant pleaseeeeeeeeeee
Attachments:
Similar questions