Math, asked by bhuvisweety1458, 9 months ago

In ∆ ABC ,AD is the median Show that AB²+AC²=2(AD²+BD²)

Answers

Answered by Anonymous
0

Answer:

construction :- draw a line AM perpendicular to BC.

we have to prove : AB² + AC² = 2(AD² + BD²)

proof :- case 1 :- when , it means AD is perpendicular on BC and both angles are right angle e.g., 90°

then, from ∆ADB,

according to Pythagoras theorem,

AB² = AD² + BD² ..... (1)

from ∆ADC ,

according to Pythagoras theorem,

AC² = AD² + DC² ...... (2)

AD is median.

so, BD = DC .......(3)

from equations (1) , (2) and (3),

AB² + AC² = AD² + AD² + BD² + BD²

AB² + AC² = 2(AD² + BD²) [hence proved ]

case 2 :- when

Let us consider that, ADB is an obtuse angle.

from ∆ABM,

from Pythagoras theorem,

AB² = AM² + BM²

AB² = AM² + (BD + DM)²

AB² = AM² + BD² + DM² + 2BD.DM ......(1)

from ∆ACM,

according to Pythagoras theorem,

AC² = AM² + CM²

AC² = AM² + (DC - DM)²

AC² = AM² + DC² + DM² - 2DC.DM ......(2)

from equations (1) and (2),

AB² + AC² = 2AM² + BD² + DC² + 2DM² + 2BD.DM - 2DC.DM

AB² + AC² = 2(AM² + DM²) + BD² + DC² + 2(BD.DM - DC.DM) ...........(3)

a/c to question, AD is median on BC.

so, BD = DC .....(4)

and from ADM,

according to Pythagoras theorem,

AD² = AM² + DM² ........(5)

putting equation (4) and equation (5) in equation (3),

AB² + AC² = 2AD² + 2BD² + 2(BD.DM - BD.DM)

AB² + AC² = 2(AD² + BD²) [hence proved].

Step-by-step explanation:

please make me Brainlist

Have a Nice day

Attachments:
Answered by Salmonpanna2022
1

Answer:

AB² + AC² = 2(AD² + BD²).

Step-by-step explanation:

(i)

In ΔAED,

⇒ AD² = AE² + DE²

⇒ AE² = AD² - DE²

(ii)

In ΔAEB,

⇒ AB² = AE² + BE²

           = AD² - DE² + BE²

           = AD² - DE² + (BD + DE)²  {BE = BD + DE}

           = AD² - DE² + BD² + DE² + 2BD * DE - DE²

           = AD² + BD² + 2BD * DE

(iii)

In ΔAEC,

⇒ AC² = AE² + EC²

           = AD² - DE² + EC²

           = AD² - DE² + (DC - DE)²

           = AD² - DE² + DC² + DE² - 2DC * DE

           = AD² + BD² - 2BD * DE {DC = BD}

On solving (ii) & (iii), we get

⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE

                     = AD² + BD² + AD² + BD²

                     = 2(AD² + BD)²

Hence proved.!

Attachments:
Similar questions