In ABC and ABD, if DA = CB and DAB = CBA, prove that AOB is isosceles.
Answers
GIVEN,
AD = BC
∠1 = ∠2
∠3 = ∠4
TO PROVE : BD = AC
PROOF :
HERE,
IN Δ A0D AND Δ BOC
AD = BC (GIVEN)
∠1 = ∠2 (GIVEN)
∠AOD = ∠BOC (VERTICALLY OPP. ANGLES)
∴ Δ A0D ≅ Δ BOC (BY AAS)
SO, OD = OC (CPCT)--------------------------------------1
NOW,
IN Δ AOB
∠3 =∠4
OB = OA (ISOSCELES Δ PROP.)-----------------------------2
THEN,
OD + OB = OC + OA (ADDING 1 AND 2)
∴ BD = AC
HENCE PROVED
Step-by-step explanation:
GIVEN,
AD = BC
∠1 = ∠2
∠3 = ∠4
TO PROVE : BD = AC
PROOF :
HERE,
IN Δ A0D AND Δ BOC
AD = BC (GIVEN)
∠1 = ∠2 (GIVEN)
∠AOD = ∠BOC (VERTICALLY OPP. ANGLES)
∴ Δ A0D ≅ Δ BOC (BY AAS)
SO, OD = OC (CPCT)--------------------------------------1
NOW,
IN Δ AOB
∠3 =∠4
OB = OA (ISOSCELES Δ PROP.)-----------------------------2
THEN,
OD + OB = OC + OA (ADDING 1 AND 2)
∴ BD = AC
HENCE PROVED
this the right answer
please mark me as brainlist.