Math, asked by satiwalesushant, 7 months ago

In ∆ABC, angle A= 60, angle B = 90, angle C = 30, AB = √3 cm. Then AC = *
1)√3 /2
2)2√3
3)√3
4)1/√3​

Answers

Answered by Manmohan04
0

Given,

\[\begin{array}{l}\angle A = 60^\circ \\\angle B = 90^\circ \\\angle C = 30^\circ \\AB = \sqrt 3 cm\\AC = ?\end{array}\]

Solution,

Use sine law,

\[\frac{{\sin A}}{{BC}} = \frac{{\sin B}}{{AC}} = \frac{{\sin C}}{{AB}}\]

\[\frac{{\sin 90^\circ }}{{AC}} = \frac{{\sin 30^\circ }}{{\sqrt 3 }}\]

\[AC = \frac{{\sqrt 3 }}{{\sin 30^\circ }}\]

\[AC = 2\sqrt 3 \]

Hence the value of AC is \[2\sqrt 3 cm\]

The correct option is (2), i.e. \[2\sqrt 3 cm\]

Similar questions