Math, asked by janhavikanire91, 9 months ago

In ∆ABC, angle A=90°, AD,BE,CF are medians prove that 2AB²=2AC²+BC²​

Answers

Answered by pinjaraarifisha
4

Answer:

Draw right angle triangle ABC,

draw medians.  AD, BE, CF.  Now Join DF.

Since D and F are midpoints of sides AB and BC,  DF will be parallel to AC and is equal to 1/2 AC.

ADF, ABE, AFC are all  right angle triangles.

LHS = 2 (AD² +  BE² +  CF² )

        = 2 [ (AF² + DF²) + (AB² + AE²) + (AF² + AC²) ]

     =  2 [ (AB²/4 + AC²/4)  + (AB² + AC²) + (AC²/4 + AB²/4) ]

       = 2 [ BC² /2 +  BC² ]

       = 3 ( BC² ]

&lt;html&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>h1{</p><p></p><p>text-transform:uppercase;</p><p></p><p>margin-top:90px;</p><p></p><p>text-align:center;</p><p></p><p>font-family:Courier new,monospace;</p><p></p><p>border:3px solid rgb(60,450,500);</p><p></p><p>border-top:none;</p><p></p><p>width:90%;</p><p></p><p>letter-spacing:-6px;</p><p></p><p>box-sizing:border-box;</p><p></p><p>padding-right:5px;</p><p></p><p>border-radius:6px;</p><p></p><p>font-size:35px;</p><p></p><p>font-weight:bold;</p><p></p><p>}</p><p></p><p>h1 span{</p><p></p><p>position:relative;</p><p></p><p>display:inline-block;</p><p></p><p>margin-right:3px;</p><p></p><p>}</p><p></p><p>@keyframes shahir{</p><p></p><p>0%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>40%</p><p></p><p>{</p><p></p><p>transform: translateY(0px) rotate(0deg);</p><p></p><p>}</p><p></p><p>50%</p><p></p><p>{</p><p></p><p>transform: translateY(-50px)rotate(180deg);;</p><p></p><p>}</p><p></p><p>60%</p><p></p><p>{</p><p></p><p>transform: translateY(0px)rotate(360deg);;</p><p></p><p>}</p><p></p><p>100%</p><p></p><p>{</p><p></p><p>transform: translate(0px)rotate(360deg);;</p><p></p><p>}}</p><p></p><p>h1 span</p><p></p><p>{</p><p></p><p>animation: shahir 3s alternate infinite linear;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(1)</p><p></p><p>{color:lime;</p><p></p><p>animation-delay: 0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(2)</p><p></p><p>{color:lightmaroon;</p><p></p><p>animation-delay: 0.2s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(3)</p><p></p><p>{color:red;</p><p></p><p>animation-delay:0s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(4)</p><p></p><p>{color:green;</p><p></p><p>animation-delay: 0.4s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(5)</p><p></p><p>{color:blue;</p><p></p><p>animation-delay: 0.5s;</p><p></p><p>}</p><p></p><p>h1 span:nth-child(6)</p><p></p><p>{color:purple;</p><p></p><p>animation-delay: 0.3s;}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;meta name="viewport" content="width=device-width" &gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;&lt;center&gt;&lt;div&gt;&lt;h1&gt;&lt;span&gt;P.&lt;/span&gt;&lt;span&gt;M.&lt;/span&gt;&lt;span&gt;A&lt;/span&gt;&lt;span&gt;R&lt;/span&gt;&lt;span&gt;I&lt;/span&gt;&lt;span&gt;F&lt;/span&gt;</p><p></p><p>&lt;/h1&gt;&lt;/div&gt;&lt;/center&gt;&lt;/body&gt;&lt;/html&gt;

Answered by Anonymous
0

Since D and F are midpoints of sides AB and BC,  DF will be parallel to AC and is equal to 1/2 AC.

ADF, ABE, AFC are all  right angle triangles.

LHS = 2 (AD² +  BE² +  CF² )

        = 2 [ (AF² + DF²) + (AB² + AE²) + (AF² + AC²) ]

     =  2 [ (AB²/4 + AC²/4)  + (AB² + AC²) + (AC²/4 + AB²/4) ]

       = 2 [ BC² /2 +  BC² ]

       = 3 ( BC² ]

Similar questions