in Δ ABC, angle A=90° she BP perpendicular seg AC AP=2 PC=8 find BP
Answers
intriangleabc
b=90
0
bdisperpendiculartoac
bc=8cm
ac=10cm
bd=h
If BD perpendicular bisect on AC it will be divide in two equal part
Then,
ad = dc = 10 \div 2 = 5ad=dc=10÷2=5
Here, this triangle form in two right angled triangle BDC And BDA
In triangle BDC
\begin{gathered}dc = 5cm \\ bc = 8cm \\ bd = h\end{gathered}
dc=5cm
bc=8cm
bd=h
Here, we can use Pythagoras theorem in triangle BDC
{h} {}^{2} = \: {p} {}^{2} + {b} {}^{2}h
2
=p
2
+b
2
p {}^{2} = \: h {}^{2} - b {}^{2}p
2
=h
2
−b
2
\begin{gathered}bd {}^{2} = bc {}^{2} - dc {}^{2} \\ bd = \sqrt{8{ }^{2} - 5 {}^{2} } \\ bd = \sqrt{64 - 25} \\ bd = \sqrt{39 } \\ bd = 6.2\end{gathered}
bd
2
=bc
2
−dc
2
bd=
8
2
−5
2
bd=
64−25
bd=
39
bd=6.2
Then,
BD = 6.2 CM
hope this helped you
Answer:
Hope it helps you Friend