In ∆abc angle c=90° and cot B=1/√3 then prove cosA×cosB=sinA×sinB
Answers
Answered by
1
if cot B=1/root3 it means that B=60 so a will be 30 cosA×cosB=cos30×cos60=1/2×root3/2=root3/4
and sinA×sinB=sin30×sin60=root3/2×1/2=root3/4
so cosA×cosB=sinA×sinB
hence proved
and sinA×sinB=sin30×sin60=root3/2×1/2=root3/4
so cosA×cosB=sinA×sinB
hence proved
Similar questions
English,
8 months ago
Social Sciences,
8 months ago
Biology,
1 year ago
Math,
1 year ago
Physics,
1 year ago