In ΔABC,angle C is obtuse AD perpendicular BCproduced and BE perpendicular AC produced prove tht AB²=BC.BD+AC.AE
Answers
Answered by
3
See the attachment.
In right angled triangle ABE,
AB² = AE² + BE²
= (AC+CE)² + BE²
= AC² + CE² + 2.AC.CE + BE²
= AC² + (CE²+BE²) + 2.AC.CE (in ΔBCE, CE²+BE² = BC²)
⇒AB² = AC² + BC² + 2.AC.CE --------------------(1)
Similarly in right angled triangle ADB,
AB² = AD² + BD²
= AD² + (BC+CD)²
= AD² + BC² + 2.BC.CD + CD²
= (AD² + CD²) + BC² + 2.BC.CD (In ΔACD, AD²+CD² = AC²)
⇒AB² = AC² + BC² + 2.BC.CD --------------------(2)
From equations (1) and (2);
AC² + BC² + 2.AC.AE = AC² + BC² + 2.BC.CD
⇒ AC.CE = BC.CD ----------------------------------(3)
From triangle ADB,
AB² = AD² + BD²
= (AC² - CD²) + (BC+CD)² (In ΔACD, AC² = AD²+CD²)
= AC² - CD² + BC² + CD² + 2.BC.CD
= AC² + BC² + 2.BC.CD
= AC² + BC² + BC.CD + BC.CD (from equation 3)
= AC² + BC² + BC.CD + AC.CE
= AC² + AC.CE + BC² + BC.CD
= AC(AC+CE) + BC(BC+CD)
⇒AB² = AC.AE + BC.BD (PROVED)
In right angled triangle ABE,
AB² = AE² + BE²
= (AC+CE)² + BE²
= AC² + CE² + 2.AC.CE + BE²
= AC² + (CE²+BE²) + 2.AC.CE (in ΔBCE, CE²+BE² = BC²)
⇒AB² = AC² + BC² + 2.AC.CE --------------------(1)
Similarly in right angled triangle ADB,
AB² = AD² + BD²
= AD² + (BC+CD)²
= AD² + BC² + 2.BC.CD + CD²
= (AD² + CD²) + BC² + 2.BC.CD (In ΔACD, AD²+CD² = AC²)
⇒AB² = AC² + BC² + 2.BC.CD --------------------(2)
From equations (1) and (2);
AC² + BC² + 2.AC.AE = AC² + BC² + 2.BC.CD
⇒ AC.CE = BC.CD ----------------------------------(3)
From triangle ADB,
AB² = AD² + BD²
= (AC² - CD²) + (BC+CD)² (In ΔACD, AC² = AD²+CD²)
= AC² - CD² + BC² + CD² + 2.BC.CD
= AC² + BC² + 2.BC.CD
= AC² + BC² + BC.CD + BC.CD (from equation 3)
= AC² + BC² + BC.CD + AC.CE
= AC² + AC.CE + BC² + BC.CD
= AC(AC+CE) + BC(BC+CD)
⇒AB² = AC.AE + BC.BD (PROVED)
Attachments:
dishabhimrajka:
thnx
Similar questions