In ΔABC, angleA+angleB=105 and AngleB+ AngleC=112,then find Angle A, B and C
Answers
angle A + angle B = 105°
angle A = 105° - angle B
angle B + angle C = 112°
angle C = 112° - angle B
In triangle ABC,
angle A + angle B + angle C = 180° (sum of angles of a triangle)
(105°-angle B) + angle B +(112°-angle B) = 180°
105° +112° - angle B + angle A - angle B = 180°
217° -2 angle B + angle B = 180°
-angle B = 180°-217°
-angle B = -37°
angle B = 37°
thus, angle A = 105° - angle B = 105°-37° = 68°
angle C = 112°-angle B = 112°-37° = 75°
Answer:
The Value of ∠A , ∠B, ∠ C is 68°, 37°, 75° respectively.
Step-by-step explanation:
∵Sum of all interior angles of a triangle = 180°
∴ ∠A + ∠B + ∠C = 180° -----------------------(eq.1)
Given that,
∠A + ∠B = 105° -------------------( eq. 2 )
and,
∠B + ∠C = 112° --------------------( eq. 3)
On adding (eu.2) and (eq.3),
We get,
∠A + 2∠B + ∠C = 217° -------------------------(eq.4)
Now, Subtracting (eq.1) from (eq.4),
We get,
∠A+∠C+ 2∠B - ∠A - ∠C - ∠B = (217°-180°)
⇒∠B = 37°
∴∠A + ∠B = 105° and ∠B + ∠C = 112°
⇒∠A = 105° - 37° ⇒ ∠C = 112° - 37°
⇒ ∠A = 68° ⇒∠C = 75°
∴The required ∠A, ∠B, ∠C are 68°, 37°, 75° respectively.
____________________________________________________
// Hope this will help you //
// Please Mark as Brainliest //