in ∆ABC,B=90°,AC=5cm,and BC=4cm find AB
Answers
Answered by
0
ABC is a right angled triangle
Using Pythagorean’s theorem
AC^2 =AB^2 +BC^2
5^2 = AB^2 + 4^2
25=AB^2+16
25-16=AB^2
9=AB^2
AB=3cm
I hope it will help you
Using Pythagorean’s theorem
AC^2 =AB^2 +BC^2
5^2 = AB^2 + 4^2
25=AB^2+16
25-16=AB^2
9=AB^2
AB=3cm
I hope it will help you
Answered by
7
GIVEN :-
- In △ABC , ∠B = 90°.
- AC = 5 cm.
- BC = 4 cm.
TO FIND :-
- AB.
SOLUTION :-
∵ In △ABC , ∠B = 90°, Therefore It is a right angled triangle.
◉ Hypotenuse (AC) = 5 cm.
◉ Base (BC) = 4 cm
◉ Perpendicular (AB) = ?
☯ BY PYTHAGORAS THEOREM,
➫ (Hypotenuse)² = (Base)² + (Perpendicular)²
➫ AC² = BC² + AB²
➫ (5)² = (4)² + AB²
➫ 25 = 16 + AB²
➫ AB² = 25 - 16
➫ AB² = 9
➫ AB = √9
➫ AB = 3
Hence the Perpendicular (AB) = 3 cm.
VERIFICATION :-
➫ (Hypotenuse)² = (Base)² + (Perpendicular)²
➫ AC² = BC² + AB²
➫ 5² = 4² + 3²
➫ 25 = 16 + 9
➫ 25 = 25
L.H.S = R.H.S
HENCE VERIFIED ✔
Attachments:
Similar questions