In ΔABC, BC = 5, AC = 4 and cos(A-B)=7/8. Find the value of 96 cosC.
Answers
Answered by
6
Step-by-step explanation:
Given In ∆ABC, <ABC = 90°
AB = 6 units , BC = 8 units
By Phythogarian theorem:
i) AC² = AB²+BC²
= 6²+8²
= 36+64
= 100
=> AC = √100
=> AC = 10 units.
ii)sinA = BC/AC = 8/10
cosC = BC/AC = 8/10
cosA = AB/AC = 6/10
sinC = AB/AC = 6/10
Now ,
sinAcosC+cosAsinC
= \frac{8}{10}\times\frac{8}{10}+\frac{6}{10}\times\frac{6}{10}
10
8
hope it helps u.
take care
×
10
8
+
10
6
×
10
6
= \frac{64}{100}+\frac{36}{100}
100
64
+
100
36
= \frac{64+36}{100}
100
64+36
= \frac{100}{100}
100
100
= 11
Therefore,
sinAcosC+cosAsinC =1
Similar questions