Math, asked by somesh244, 7 months ago

In ∆ ABC bisectors of exterior angles B and C meet at O. Given ∠BAC= 60° and ∠ABC = 70°, find ∠BOC.​

Answers

Answered by beesamnagendher
2

Answer:

Given Below

Step-by-step explanation:

Answer

In In △ABC,

In △ABC,∠ABC+∠ACB+∠BAC=180

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB=

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 2

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB=

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 2

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC=

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 2

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC=

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 2

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,∠OCB+∠OBC+∠BOC=180

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,∠OCB+∠OBC+∠BOC=18065+60+∠BOC=180

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,∠OCB+∠OBC+∠BOC=18065+60+∠BOC=180∠BOC=180−125

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,∠OCB+∠OBC+∠BOC=18065+60+∠BOC=180∠BOC=180−125∴∠BOC=55

In △ABC,∠ABC+∠ACB+∠BAC=180∠ABC+70+50=180∠ABC=60 ∘ ∠OCB= 21 (180−∠ACB)∠OCB= 21 (180−50)∠OCB=65 ∘ ∠OBC= 21 (180−∠ABC)∠OBC= 21 (180−60)∠OBC=60 ∘ In △OBC,∠OCB+∠OBC+∠BOC=18065+60+∠BOC=180∠BOC=180−125∴∠BOC=55 ∘

Similar questions