Math, asked by lakshyashrinet, 7 months ago

in ∆abc c = 2π/3, then prove that cos^2A + cos^2B - cosAcosB = 3/4​

Answers

Answered by mananmadani53
2

Answer:

If A + B = 60° then how do I find the value of cos^2A + cos^2B - cosA cosB? 3 Answers. Bitan Sarkar, Btech Electronics and Communication 

Step-by-step explanation:

please mark as brainlist

Answered by mourya6933
1

Answer:

Step-by-step explanation:

c=2π/3=2×180/3=120

In triangle a+b+c=180

a+b=180-c=180-120=60

a+b=60--> 1

LHS

cos²A + cos²B - cosAcosB

cos²b+sin²b=1

cos²b=1-sin²b

cos²A + 1-sin²b - cosAcosB

cos²A -sin²b =cos(a+b)×cos(a-b)

cos(a+b)×cos(a-b)+1 - cosAcosB -->2

1 in 2

cos(60)×cos(a-b)+1 - cosAcosB

\frac{1}{2\\}(cos a-b)+1 - cosAcosB -->3

(cos a-b)=cos a cos b + sin a sin b-->4

4 in 3

\frac{cos a cos b + sin a sin b}{2}+1 - cosAcosB

\frac{cos a cos b + sin a sin b-2cos a cos b}{2}+1

\frac{sinasinb-cosacosb}{2\\}+1

-(cos a cos b - sin a sin b)/2+1---> 5

cos(a+b)= cos a cos b- sin a sin b--> 6

6 in 5

-(cos(a+b))/2+1--> 7

1 in 7

-(1/2)/2+1

1-1/4

4-1/4=3/4

Similar questions