in ∆abc c = 2π/3, then prove that cos^2A + cos^2B - cosAcosB = 3/4
Answers
Answered by
2
Answer:
If A + B = 60° then how do I find the value of cos^2A + cos^2B - cosA cosB? 3 Answers. Bitan Sarkar, Btech Electronics and Communication
Step-by-step explanation:
please mark as brainlist
Answered by
1
Answer:
Step-by-step explanation:
c=2π/3=2×180/3=120
In triangle a+b+c=180
a+b=180-c=180-120=60
a+b=60--> 1
LHS
cos²A + cos²B - cosAcosB
cos²b+sin²b=1
cos²b=1-sin²b
cos²A + 1-sin²b - cosAcosB
cos²A -sin²b =cos(a+b)×cos(a-b)
cos(a+b)×cos(a-b)+1 - cosAcosB -->2
1 in 2
cos(60)×cos(a-b)+1 - cosAcosB
(cos a-b)+1 - cosAcosB -->3
(cos a-b)=cos a cos b + sin a sin b-->4
4 in 3
+1 - cosAcosB
+1
+1
-(cos a cos b - sin a sin b)/2+1---> 5
cos(a+b)= cos a cos b- sin a sin b--> 6
6 in 5
-(cos(a+b))/2+1--> 7
1 in 7
-(1/2)/2+1
1-1/4
4-1/4=3/4
Similar questions