Math, asked by ka4thik95, 1 year ago

in ∆ABC cos(B+2C+3A/2)+cos(A-B/2)=?​

Answers

Answered by hanshitha12217
27

Step-by-step explanation:

so this is the correct answer

Attachments:
Answered by pragyavermav1
3

Concept:

We need to first recall the concept of trigonometric ratios and triangle to answer this question.

  • The sum of all angles of a ΔABC = 180^{0}.
  • cos(180^{0} +α) = - cos α                      (2)

To find:

We have to find the value of cos(\frac{B+2C+3A}{2}) + cos (\frac{A-B}{2}) in triangle ABC.

Solution:

In ΔABC,

       A + B + C = 180^{0}                                   (1)

cos(\frac{B+2C+3A}{2}) = cos (\frac{(A+B+C)+2A+C}{2})

By using (1)

                        = cos(\frac{180^{0}+2A+C}{2})

                        = cos (\frac{180^{0}A+180^{0}-B} {2})                     [  using (1)   A+C = 180^{0}- B ]

                        = cos (180^{0}+\frac{A-B} {2})

By using (2)

                        = - cos(\frac{A-B} {2})

Hence, cos(\frac{B+2C+3A}{2}) + cos (\frac{A-B}{2}) =  - cos(\frac{A-B} {2}) + cos(\frac{A-B} {2})

                                                         = 0

Similar questions