Math, asked by BullsEye9267, 8 months ago

In ΔABC, D and E are points on side AB and AC respectively. DE is parallel to BC. If lengths of AD, DB and DE are 9 cm, 6 cm and 5.4 cm respectively find length of BC?

A) 3.6 cm B) 4.8 cm C) 11.2 cm D) 9 cm

Answers

Answered by master5481
2

Answer:

PLS FOLLOW me I will give you thanks

Answered by pathakshreya456
1

Answer:

GIVEN: In  Δ ABC, D and E are points on AB and AC , DE ||  BC and  AD = 2.4 cm, AE = 3.2 cm, DE = 2 cm and BE = 5 cm.

In Δ ADE and Δ ABC,

∠ADE =∠ABC    (corresponding angles)

[DE || BC, AB is transversal]

∠AED =∠ACB     (corresponding angles)

[DE || BC, AC is transversal]

So, Δ ADE  ~ Δ ABC      (AA similarity)

Therefore, AD/AB = AE/AC = DE/BC

[In similar triangles corresponding sides are proportional]

AD/AB = DE/BC

2.4/(2.4+DB)  = 2/5

2.4 × 5  = 2(2.4+ DB)

12 = 4.8 + 2DB

12 - 4.8  = 2DB

7.2 = 2DB

DB = 7.2/2  

DB = 3.6 cm

Similarly, AE/AC = DE/BC

3.2/(3.2+EC) = 2/5

3.2 × 5 = 2(3.2+EC)

16 = 6.4 + 2EC

16 - 6.4 = 2EC

9.6 = 2EC

EC = 9.6/2

EC = 4.8 cm

Hence,BD = 3.6 cm and CE = 4.8 cm.

HOPE THIS ANSWER WILL HELP YOU…

Similar questions