in ∆ABC D is the point on such AB and E is a point on side AC such that angle ADE =angle ABC, AD=2,BD=3 and AE =3, then what is the value of CE
Answers
Answer:
The basic proportionality theorem states that if a line is drawn parallel to one side of a triangle and it intersects the other two sides at two distinct points then it divides the two sides in the same ratio.
It is given that AD=4x−38, BD=3x−1, AE=8x−7 and CE=5x−3. Let AC=x
Using the basic proportionality theorem, we have
Step-by-step explanation:
AD
=
AC
AE
⇒
3x−1
4x−3
=
x
8x−5
⇒x(4x−3)=(3x−1)(8x−5)
⇒4x
2
−3x=3x(8x−5)−1(8x−5)
⇒4x
2
−3x=24x
2
−15x−8x+5
⇒4x
2
−3x=24x
2
−23x+5
⇒24x
2
−23x+5−4x
2
+3x=0
⇒20x
2
−20x+5=0
⇒5(4x
2
−4x+1)=0
⇒4x
2
−4x+1=0
⇒(2x)
2
−(2×2x×1)x+1
2
=0(∵(a−b)
2
=a
2
+b
2
−2ab)
⇒(2x−1)
2
=0
⇒(2x−1)=0
⇒2x=1
⇒x=
2
1
Hence, x=
2
1
.
Given:
In ∆ABC
angle ADE =angle ABC
AD=2
BD=3
AE =3
Find CE=?
given that angle ADE =angle ABC
By basic proportionality theorem
CE = 4.8 cm
Hence the value of CE=4.8cm