Math, asked by Anonymous, 10 months ago

In ∆ABC, DE║BC and AB=2x, AC=2x+3, DB=x-3 and EC=x-2. Find x. please dont spam

Answers

Answered by Anonymous
66

\Large\underline\bold{Question:-}

★In ∆ABC, DE║BC and AB=2x, AC=2x+3, DB=x-3 and EC=x-2, Find x.

\Large\underline\bold{Answer:-}

\large\underline\bold{Given:-}

\sf\ ABC \:is\:a\: triangle

\sf\ DE || BC

\sf\ AB = 2x, AC=2x+3, DB=x-3 \sf\ and\:EC=x-2

\large\underline\bold{To\:Find:-}

\sf\ We\:have\:to\:find\:x

\large\underline\bold{Solution:-}

\sf\ DE \:is \:parallel \:to \: BC

\sf\ By\: Basic\: Proportionality\:Theorem

\sf\ =(\frac{AB}{BD}) = (\frac{AC}{EC})

\small\underline\bold{ Putting\:the\: values:-}

\sf\ (\frac{2x}{x-3})=(\frac{2x+3}{x-2})

\sf\ By\: cross\: multiplication\: method

\sf\ We\: get;

\sf\ =2x^2-4x=2x^2-3x-9

\sf\ = -4x= -3x-9

\sf\ = -x= -9

\large\underline\bold\red{= x=9}

\sf\ Hence\: the\: value\:of\:x\: is \:9.

Similar questions