Math, asked by sanjubala6953, 1 year ago

In ΔABC, For any angle θ, then show that a cos θ = b cos(C + θ) + c cos(B - θ).

Answers

Answered by MaheswariS
26

Answer:


Step-by-step explanation:

Formula used:


cos(A+B)=cosA cosB - sinA sinB

cos(A-B)=cosA cosB + sinA sinB


Area of triangle ABC,

\Delta=\frac{1}{2}ab\:sinC=\frac{1}{2}ac\:sinB

\frac{\Delta}{a}=b\:sinC=\frac{1}{2}c\:sinB

b\:cos(C+\theta)+c\:cos(B-\theta)\\\\= b[cosC\:cos\theta-sinC\:sin\theta]+c[cosB\:cos\theta+sinB\:sin\theta]

= b\:cosC\:cos\theta-b\:sinC\:sin\theta+c\:cosB\:cos\theta+c\:sinB\:sin\theta\\\\= (b\:cosC+c\:cosB)cos\theta+(-b\:sinC+c\:sinB)sin\theta

= acos\theta+(-\frac{\Delta}{a}+\frac{\Delta}{a})sin\theta\\= acos\theta+(0)sin\theta\\= acos\theta



Answered by ssbhushan13
4

Answer:

ok I think it is useful to you

Attachments:
Similar questions