Math, asked by AstraDsouza, 10 months ago

In ∆ABC, If Angle A=45°, Angle B = 60° then find the ratio of its sides.​

Answers

Answered by utsav96
9

Pls mark as brainliest answer

Attachments:
Answered by Anonymous
51

Answer:

a:b:c </p><p>= 2 :  \sqrt{6}  : ( \sqrt{3}  + 1) \:

Step By Step Explanation:

By the sine rule,

 \frac{a}{ \sin(a) }  =  \frac{b}{ \sin(b) }   = \frac{c}{ \sin(c) }  \\

 \frac{a}{b}  =  \frac{ \sin \: a }  { \sin \: b}  \:  \: and \:  \:  \frac{b}{c}  = \frac{ \sin \: b }  { \sin \: c}

a : b : c  =  \sin \: a: \sin \: b \: : \sin \: c \:

Given:

Angle A =45°

Angle B=60°

→ Angle A + Angle B + Angle C = 180°

45°+60°+Angle C=180°

Angle C =180°-105°

Angle C = 75°

Now,

→ Sin A = Sin 45° =

 \frac{1}{ \sqrt{2} }

→ Sin B = Sin 60° =

 \frac{ \sqrt{3} }{2}

→ Sin C

= Sin 75°

= Sin(45°+30°)

=Sin 45° Cos 30° + Cos 45° Sin 30°

 =  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{3} }{2}  +  \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  \\   = \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} }  \\  =  \frac{ \sqrt{3}  + 1} {2 \sqrt{2} }

→ The Ratio of the sides of ∆ ABC

= a:b:c

a:b:c = 2 :  \sqrt{6}  : ( \sqrt{3}  + 1)

a:b:c = 2 :  \sqrt{6}  : ( \sqrt{3}  + 1) \:

→ Sin A : Sin B : Sin C

 =  \frac{1}{ \sqrt{2} }  :  \frac{ \sqrt{3} }{2}  :  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }

a:b:c </p><p>= 2 :  \sqrt{6}  : ( \sqrt{3}  + 1) \:

Similar questions