Math, asked by sudheer126, 1 year ago

in ∆ABC if cosA cosB cosC=1/3 then TanA TanB+TanB TanC+TanC TanA=​

Answers

Answered by tuka81
19

Given cosAcosBcosC=1/3

then tanAtanB +tanB tanC+ tanC tanA=sinAsinBcosC +sinBsinCcosA +sinCsinAcosB/cosAcosBcosC

tanAtanB +tanB tanC+ tanC tanA=(sinA sinB cosC +sinB sinC cosA +sinC sinA cosB)/cosA cosB cosC

=3 (sinA sinB cosC +sinC [sinB cosA + sinA cosB])

=3 (sinA sinB cosC +sinC [sin(A+B)])

=3 (sinA sinB cosC +sin2C )

=3 (sinA sinB cosC +1-cos2C )

=3 (1+cosC{-cosC+sinA sinB } )

=3 (1+cosC cosA cosB )

=3 (1+1/3 )

=3 (4/3)

=4

Answered by siddhartharao77
33

Answer:

4

Step-by-step explanation:

Given, A + B + C = π

Then, A + B = π - C

Apply 'cos' on both sides, we get

⇒ cos(A + B) = cos(π - C)

∴ cos(A + B) = cosAcosB - sinAsinB and cos(π - C) = -cosC

⇒ cosA * cosB - sinA * sinB = -cosC

⇒ cosA * cosB + cosC = sinA * sinB

On dividing the entire equation by cosA * cosB, we get

⇒ 1 + (cosC/cosA * cosB) = (sinA * sinB)/cosA * cosB

⇒ 1 + (cosC/cosA * cosB) = tanA * tanB     ------- (i)

Likewise,

⇒ tanB * tanC = 1 + (cosA/cosB * cosC)    ------ (ii)

⇒ tanC * tanA = 1 + (cosB/cosC * cosA)    ------- (iii)

On solving (i), (ii) & (iii), we get

⇒ tanA * tanB + tanB * tanC + tanC * tanA

⇒ 1 + (cosC/cosA * cosB) + 1 + (cosA/cosB * cosC) + 1 + (cosB/cosC * cosA)

⇒ 3 + (cos²A + cos²B + cos²C)/cosA * cosB * cosC

⇒ 3 + (cos²A + cos²B + cos²C)/[1/3] {∵Given}

⇒ 3 + 3(cos²A + cos²B + cos²C)     --------------- (iv)

We know that In a triangle ABC.

cos²A + cos²B + cos²C = 1 - 2cosA * cosB * cosC

⇒ cos²A + cos²B + cos²C = 1 - 2(1/3)

                                          = 1/3.

Substitute the value of cos²A + cos²B + cos²C in (iv), we get

⇒ 3 + 3(1/3)

⇒ 4.

Therefore, TanA TanB + TanB TanC + TanC TanA = 4

Hope it helps!

Similar questions