Math, asked by shalinideshmukh38, 4 months ago

In ∆ABC, if cot A/2, cot B/2, cot C/2 are in A.P then show that a,b,c are in A.P​

Answers

Answered by GeniusYH
3

Answer:

Step-by-step explanation:

Given :

∆ABC

cot(\frac{A}{2}), \ cot(\frac{B}{2}), \ cot(\frac{C}{2}) are in AP.

Procedure :

As cot(\frac{A}{2}) = \sqrt{\frac{s(s-a)}{(s-b)(s-c)} }

As cot(\frac{B}{2}) = \sqrt{\frac{s(s-b)}{(s-a)(s-c)} }

As cot(\frac{C}{2}) = \sqrt{\frac{s(s-c)}{(s-a)(s-b)} }

\sqrt{\frac{s(s-a)}{(s-b)(s-c)} }, \sqrt{\frac{s(s-b)}{(s-a)(s-c)} },\sqrt{\frac{s(s-c)}{(s-a)(s-b)} } are in AP.

Multiplying All by \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}

Hence (\sqrt{s-a} )^{2}, (\sqrt{s-b} )^{2}, (\sqrt{s-c} )^{2} are in AP.

⇒ (s - a), (s - b), (s - c) are in AP.

⇒ (-a), (-b), (-c) are in AP.

∴ a, b, c are in AP.

Hence Proved.

Thanks !

Similar questions