Math, asked by samuelpaul, 1 year ago

In ∆ABC, If r1=8, r2=12, r3=24,Show that a=12,b=16,c=20. (From Properties of Triangles)


samuelpaul: what do you want brother?
coolboy73: Bro i want to ask that
coolboy73: that i think you are a moderator in previous month
coolboy73: then why u leave
coolboy73: moderator ship
samuelpaul: I'm not a moderator =_=
coolboy73: Not now previous month
coolboy73: because you gI've only 1056 answer
coolboy73: i think you are moderator in previous month
samuelpaul: no bro..

Answers

Answered by siddhartharao77
18

Step-by-step explanation:

Given, r₁ = 8, r₂ = 12, r₃ = 24.

∴ Derivative of (1/r) = (1/r₁) + (1/r₂) + (1/r₃)

⇒ (1/r) = (1/8) + (1/12) + (1/24)

⇒ (1/r) = (3 + 2 + 1)/24

⇒ r = 4.

Now,

∴ Δ = √rr₁r₂r₃

⇒ Δ = √4 * 8 * 12 * 24

       = 96

(i)

r = Δ/s

⇒ 4 = 96/s

⇒ 4s = 96

⇒ s = 24.

(ii)

r₁ = Δ/s - a

⇒ 8 = 96/24 - a

⇒ 192 - 8a = 96

⇒ a = 12

(iii)

r₂ = Δ/s - b

⇒ 12 = 96/24 - b

⇒ 288 - 12b = 96

⇒ b = 16

(iv)

r₃ = Δ/s - c

⇒ 24 = 96/24 - c

⇒ 576 - 24c = 96

⇒ 480 = 24c

⇒ c = 20.

Therefore, a = 12, b = 16, c = 20.

Hope it helps!


samuelpaul: Thank you bruh.. ❤️❤️❤️
siddhartharao77: Welcome!
subhradip486: nice ❤_❤
siddhartharao77: Thank you
Answered by jesse200232
12

Hello sir garu!!!

Here is ur answer.....

Nachute brainlist ga mark chey.

Attachments:
Similar questions