In ∆ABC, If r1=8, r2=12, r3=24,Show that a=12,b=16,c=20. (From Properties of Triangles)
Answers
Answered by
15
Step-by-step explanation:
Given, r₁ = 8, r₂ = 12, r₃ = 24.
∴ Derivative of (1/r) = (1/r₁) + (1/r₂) + (1/r₃)
⇒ (1/r) = (1/8) + (1/12) + (1/24)
⇒ (1/r) = (3 + 2 + 1)/24
⇒ r = 4.
Now,
∴ Δ = √rr₁r₂r₃
⇒ Δ = √4 * 8 * 12 * 24
= 96
(i)
r = Δ/s
⇒ 4 = 96/s
⇒ 4s = 96
⇒ s = 24.
(ii)
r₁ = Δ/s - a
⇒ 8 = 96/24 - a
⇒ 192 - 8a = 96
⇒ a = 12
(iii)
r₂ = Δ/s - b
⇒ 12 = 96/24 - b
⇒ 288 - 12b = 96
⇒ b = 16
(iv)
r₃ = Δ/s - c
⇒ 24 = 96/24 - c
⇒ 576 - 24c = 96
⇒ 480 = 24c
⇒ c = 20.
Therefore, a = 12, b = 16, c = 20.
Hope it helps!
Answered by
8
________________________________
Given:- r1 = 8 , r2 = 12 , r3 = 24
Show that:- a = 12 , b = 16 , c = 24
________________________________
We know that ,
=
=
=
=
=
So,
r = 4.
Now,
= √r×r1×r2×r3
=> 96.
(1).
r = △/s
=> 4 = 96/s
=> s = 24
(2).
r1 = △/(s-a)
=> 8 = 96/(24-a)
=> a = 12
(3).
r2 = △/(s-b)
=> 12 = 96/(24-b)
=> b = 16
(4).
r3 = △/(s-c)
=> 24 = 96/(24-c)
=> c = 20
Hence proved
Hope it helps u ♡♡
Similar questions