Math, asked by kittu488, 10 months ago

In ∆ABC, line segment DE is parallel to BC. Find x,y and z.

please can you solve it.​

Attachments:

Answers

Answered by Brâiñlynêha
6

\huge\mathbb{\underline{QUESTION:-}}

In ∆ABC, line segment DE is parallel to BC. Find x,y and z.

\huge\mathbb{\underline{\blue{SOLUTION:-}}}

\huge\boxed{\underline{\red{\bold{Given :-}}}}

DE||BC

we have to find the value of x ,y ,and z

\sf\large\underline{\underline{\red{According\: to\: question:-}}}

DE||BC

So \sf\angle ADE=\angle DBC

(Corresponding angle)

\sf \implies z=70^{\circ}

(corresponding angle )

\sf \angle AED= \angle ECD

(corresponding angle)

\sf\implies y=50^{\circ}

(corresponding )

To find the value of z

we know that the sum of angels of triangle=\sf 180^{\circ}

\sf\underline{\underline{\red{Now :-}}}

\sf \angle A+ \angle B+\angle C=180^{\circ}

We find :-

\sf \angle A=?\\ \sf \angle B=70^{\circ}\\ \sf\angle C=50^{\circ}

\sf\longrightarrow \angle    A+50^{\circ} + 70^{\circ}=180^{\circ}\\ \sf\longrightarrow \angle A +120^{\circ}=180^{\circ}\\ \sf\longrightarrow \angle A=180^{\circ}-120^{\circ}\\ \sf\longrightarrow \angle A=60^{\circ}

\sf\implies x=\angle A

\large\boxed{\sf{x=60^{\circ},y=50^{\circ},z=70^{\circ}}}.

Similar questions