In ∆ABC, m∠ABC = 90° and seg BD ⊥ side AC. AD = 18 and DC = 8 then, find the values of BD and AB.
Answers
Given :-
- In ∆ABC, m∠ABC = 90°.
- seg BD ⊥ side AC.
- AD = 18 , DC = 8
To Find :-
- The values of BD and AB.
Solution :-
Condition (1) :-
In ∆ABC, seg BD ⊥ side AC .
According to Geometric mean theorem,
↪BD² = AD × DC
↪BD² = 18 × 8
↪ BD² = 144
↪ BD = √144
↪
Condition (2) :-
In ∆ABD , m∠ABD= 90°.
According to Pythagoras theorem,
↪ AD² = AB² + BD²
↪ 18² = AB² + 12²
↪ AB² = 18² - 12²
↪AB² = (18 - 12) × (18 + 12)
↪ AB² = 180
↪ AB = √180
↪
Hence,
- The values of BD and AB is 12 and 6√5.
Answer:
ɢɪᴠᴇɴ :-
ɪɴ ∆ᴀʙᴄ, ᴍ∠ᴀʙᴄ = °.
sᴇɢ ʙᴅ ⊥ sɪᴅᴇ ᴀᴄ.
ᴀᴅ = , ᴅᴄ =
ᴛᴏ ғɪɴᴅ :-
ᴛʜᴇ ᴠᴀʟᴜᴇs ᴏғ ʙᴅ ᴀɴᴅ ᴀʙ.
sᴏʟᴜᴛɪᴏɴ :-
ᴄᴏɴᴅɪᴛɪᴏɴ () :-
ɪɴ ∆ᴀʙᴄ, sᴇɢ ʙᴅ ⊥ sɪᴅᴇ ᴀᴄ .
ᴀᴄᴄᴏʀᴅɪɴɢ ᴛᴏ ɢᴇᴏᴍᴇᴛʀɪᴄ ᴍᴇᴀɴ ᴛʜᴇᴏʀᴇᴍ,
↪ʙᴅ² = ᴀᴅ × ᴅᴄ
↪ʙᴅ² = ×
↪ ʙᴅ² =
↪ ʙᴅ = √
↪ {\ʙᴏxᴇᴅ{\sғ{\ʀᴇᴅ{ʙᴅ = }}}}
ʙᴅ=
ᴄᴏɴᴅɪᴛɪᴏɴ () :-
ɪɴ ∆ᴀʙᴅ , ᴍ∠ᴀʙᴅ= °.
ᴀᴄᴄᴏʀᴅɪɴɢ ᴛᴏ ᴘʏᴛʜᴀɢᴏʀᴀs ᴛʜᴇᴏʀᴇᴍ,
↪ ᴀᴅ² = ᴀʙ² + ʙᴅ²
↪ ² = ᴀʙ² + ²
↪ ᴀʙ² = ² - ²
↪ᴀʙ² = ( - ) × ( + )
↪ ᴀʙ² =
↪ ᴀʙ = √
↪ {\ʙᴏxᴇᴅ{\sғ{\ʙʟᴜᴇ{ᴀʙ = √}}}}
ᴀʙ=√
ʜᴇɴᴄᴇ,
ᴛʜᴇ ᴠᴀʟᴜᴇs ᴏғ ʙᴅ ᴀɴᴅ ᴀʙ ɪs ᴀɴᴅ √.
Step-by-step explanation:
ᴛʜɪs ɪs ʏᴏᴜʀ ᴀɴsᴡᴇʀ ᴘʟᴢ ғᴏʟʟᴏᴡ ᴍᴇ