Math, asked by sagarpanchal71619, 11 months ago

In ∆ABC, MN||BC , MNBC = 130 CM SQUARE. IF AN:NC = 4:5. THEN ∆MAN AREA IS​

Answers

Answered by samy123123
0

Answer:

65

Step-by-step explanation:

1/2 ×130 = 65

MARK ME as BRAINLLEST

Answered by dheerajk1912
0

Area of triangle ΔMAN is 32 cm²

Step-by-step explanation:

  • Given data

        \mathbf{\frac{NC}{AN}=\frac{5}{4}}

        Adding 1 on both side, we get

        \mathbf{\frac{NC}{AN}+1=\frac{5}{4}+1}

        \mathbf{\frac{NC+AN}{AN}=\frac{5+4}{4}}

        So

        \mathbf{\frac{AC}{AN}=\frac{9}{4}}    ...1)

  • It is given that MN ║BC. So we can say that \mathbf{\Delta MAN\sim \Delta ABC}
  • We know that from theorem of ratio of area of similar triangle is equal to ratio of square of corresponding side. Means

        \mathbf{\frac{ar\Delta ABC}{ar\Delta MAN}=\left ( \frac{AC}{AN} \right )^{2}}

        \mathbf{\frac{ar\Delta ABC}{ar\Delta MAN}=\left ( \frac{9}{4} \right )^{2}}

        \mathbf{\frac{ar\Delta ABC}{ar\Delta MAN}= \frac{81}{16}}

  • Subtracting 1 on both side, we get

        \mathbf{\frac{ar\Delta ABC}{ar\Delta MAN}-1= \frac{81}{16}-1}

        \mathbf{\frac{ar\Delta ABC-ar\Delta MAN}{ar\Delta MAN}= \frac{81-16}{16}}

        \mathbf{\frac{area\ of\ MNBC}{ar\Delta MAN}= \frac{65}{16}}

  • \mathbf{\frac{130}{ar\Delta MAN}= \frac{65}{16}}     (Given that area of MNBC =130cm²)

        \mathbf{\frac{2}{ar\Delta MAN}= \frac{1}{16}}

        So

        Area of ΔMAN = 32 cm² = This is the answer.

Similar questions