Math, asked by sandipsanap8926, 8 months ago

In △ABC point D on side BC is such that DC = 6, BC = 15. Find A(△ABD) : A(△ABC) and A(△ABD) :

A(△ADC).​

Answers

Answered by TwihardsUp
40

Answer:

Here's your answer:

Given,  BC= 15, DC=6

From the figure, DC + BD = BC

                        ⇒ 6 + BD = 15

                        ⇒ BD = 9

Proof:                            \frac{ar(ABD)}{ar(ABC)}

                                      = \frac{1/2 * AD *BD}{1/2 * AD * BC }

                                      =  \frac{BD}{BC}

                                      =  \frac{9}{15}

                                      =   \frac{2}{5}

                           ∴ Required ratio = 2 : 5

                                       \frac{ar(ABD)}{ar(ADC)}

                                     = \frac{1/2 * BD* AD}{1/2 * CD* AD}

                                     =  \frac{BD}{CD\\}

                                     =   \frac{9}{6}

                                     =   \frac{3}{2}

                            ∴ Required ratio = 3 : 2

Please mark as Brainliest if you feel it's the best!

Attachments:
Similar questions