In ∆ ABC, prove that a^3 sin (B - C) + b^3 sin (C - A) + c^3 sin (A - B) = 0.
If you know then only answer plz..
Answers
Answered by
54
AⲛSⲱⲉꞅ⤵️
↬LHS=a³ sin(B−C)
↬(2RsinA)³ sin(B−C)
↬2R³⋅2sin² A⋅2sinA⋅sin(B−C)
2R³(1−cos2A)⋅[cos(A−B+C)−cos(A+B−C)]
=2R³ ⋅(1−cos2A)⋅[cos(π−2B)−cos(π−2C)]
=2R³⋅(1−cos2A)⋅(cos2C−cos2B)
=2R³⋅(cos2C−cos2B−cos2A⋅cos2C+cos2A⋅cos2B)
↬Similarly, the second part
=2R³(cos2A−cos2C−cos2⋅cos2B+cos2B⋅cos2C)
↬And the third part
=2R ³(cos2B−cos2A−cos2B⋅cos2C+cos2A⋅cos2C
↬Adding up all these three parts, we get,
↬a ³sin(B−C)+b ³ sin(C−A)+
↬c ³ sin(A−B)=0
Answered by
4
Explanation:
In ∆ ABC, prove that a^3 sin (B - C) + b^3 sin (C - A) + c^3 sin (A - B) = 0.
ok
Similar questions