In ΔABC, prove that a cos A + b cos B + c cos C = 4R sin A sin B sin C.
Answers
Answered by
4
Solution :
LHS = acosA + bcosB + ccosC
= 2RsinAcosA
+ 2RsinBcosB
+ 2RsinCcosC
= R[ 2sinAcosA+2sinBcosB+2sinCcosC]
= R[ sin 2A + sin 2B + sin 2C ]
{ In ∆ABC , A + B + C = 180° }
= R{2sin[(2A+2B)/2]cos[(2A-2B)/2]+sin2C}
= R[ 2sin(A+B)cos(A-B)+sin2C ]
= R[2sinCcos(A-B)+2sinCcosC]
=2RsinC[cos(A-B) + cosC ]
= 2RsinC[cos(A-B) - cos(A+B)]
=2RsinC{ 2sin[(A-B+A+B)/2]sin[(A+B-A+B)/2]
= 2RsinC( 2sinAsinB )
= 4RsinAsinBsinC
= RHS
••••
LHS = acosA + bcosB + ccosC
= 2RsinAcosA
+ 2RsinBcosB
+ 2RsinCcosC
= R[ 2sinAcosA+2sinBcosB+2sinCcosC]
= R[ sin 2A + sin 2B + sin 2C ]
{ In ∆ABC , A + B + C = 180° }
= R{2sin[(2A+2B)/2]cos[(2A-2B)/2]+sin2C}
= R[ 2sin(A+B)cos(A-B)+sin2C ]
= R[2sinCcos(A-B)+2sinCcosC]
=2RsinC[cos(A-B) + cosC ]
= 2RsinC[cos(A-B) - cos(A+B)]
=2RsinC{ 2sin[(A-B+A+B)/2]sin[(A+B-A+B)/2]
= 2RsinC( 2sinAsinB )
= 4RsinAsinBsinC
= RHS
••••
Answered by
5
HELLO DEAR,
Answer:
Step-by-step explanation:
now, acosA + bcosB + ccosC
= 2RsinAcosA + 2RsinBcosB + 2RsinCcosC
=> R[2sinAcosA + 2sinBcosB + 2sinCcosC]
=> R[ sin 2A + sin 2B + sin 2C ]
[ In ∆ABC , A + B + C = 180° ]
=> R{2sin[(2A+2B)/2]cos[(2A-2B)/2]+sin2C}
=> R[ 2sin(A+B)cos(A-B)+sin2C ]
=> R[2sinCcos(A-B)+2sinCcosC]
=> 2RsinC[cos(A-B) + cosC ]
=> 2RsinC[cos(A-B) - cos(A+B)]
=> 2RsinC{ 2sin[(A-B+A+B)/2]sin[(A+B-A+B)/2]
=> 2RsinC( 2sinAsinB )
=> 4RsinAsinBsinC
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions