Math, asked by tarushisaxena4210, 1 year ago

In ΔABC, prove that (b + c)\ cos(\frac{B + C}{2})\ =\ a\ cos(\frac{B - C}{2}).

Answers

Answered by MaheswariS
0

Answer:


Step-by-step explanation:

Formula used:

In triangle ABC,

(a/SinA)=(b/sinB)=(c/sinC)=2R


In triangle ABC, A+B+C=180


sin2A= 2 sinA cosA



=(b+c)\:cos(\frac{B+C}{2})\\

=(2R.sinB+2R.sinC)\:cos(\frac{B+C}{2})

=2R(sinB+sinC)\:cos(\frac{B+C}{2})

=2R[2\:sin(\frac{B+C}{2}).cos(\frac{B-C}{2})]\:cos(\frac{B+C}{2})

=2R[2\:sin(\frac{B+C}{2}).cos(\frac{B+C}{2})]\:cos(\frac{B-C}{2})

=2R[\:sin(2\frac{(B+C)}{2})]\:cos(\frac{B-C}{2})

=2R[\:sin(B+C)]\:cos(\frac{B-C}{2})

=2R[\:sin(180-A)]\:cos(\frac{B-C}{2})

=[2RsinA]\:cos(\frac{B-C}{2})

=a\:cos(\frac{B-C}{2})

Similar questions
Math, 1 year ago