Math, asked by shubhamchandak1787, 1 year ago

In ΔABC, prove that \frac{a}{bc} + \frac{cos\ A}{a}\ =\ \frac{b}{ca} + \frac{cos\ B}{b}\ =\ \frac{c}{ab} + \frac{cos\ C}{c}.

Answers

Answered by MaheswariS
0

Answer:

\frac{a}{bc}+\frac{cosA}{a}=\frac{b}{ca}+\frac{cosB}{b}=\frac{c}{ab}+\frac{cosC}{c}

Step-by-step explanation:

Formula used:


Projection formula:

In triangle ABC,

a = b cosC + c cosB

b = c cosB + b cosC

c = a cosB + b cosA


\frac{a}{bc}+\frac{cosA}{a}

=\frac{[b\:cosC +c\:cosB}{bc}+\frac{cosA}{a}

=\frac{b\:cosC}{bc}+\frac{c\:cosB}{bc}+\frac{cosA}{a}

=\frac{cosC}{c}+\frac{cosB}{b}+\frac{cosA}{a}

=\frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c}

similarly we can prove\frac{b}{ca}+\frac{cosB}{b}=\frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c}

\frac{c}{ab}+\frac{cosC}{c}=\frac{cosA}{a}+\frac{cosB}{b}+\frac{cosC}{c}

\frac{a}{bc}+\frac{cosA}{a}=\frac{b}{ca}+\frac{cosB}{b}=\frac{c}{ab}+\frac{cosC}{c}


Similar questions