In ΔABC, prove that .
Answers
Answered by
0
Solution :
LHS = tanA/2 + tanB/2 + tanC/2
= [(s-b)(s-c)/∆]
+ [(s-c)(s-a)/∆]
+ [(s-a)(s-b)/∆]
=[(s²-cs-bs+bc)+(s²-as-cs+ac)+(s²-as-bs+ab)]/∆
=(3s²-2as - 2bs - 2cs + bc + ca + ab )/∆
= [ bc + ca + ab + 3s² - 2s( a + b + c )]/∆
= [ bc + ca + ab + 3s² - 2s(2s) ]/∆
= ( bc + ca + ab + 3s² - 4s² ]/∆
= ( bc + ca + ab - s² )/∆
= RHS
•••••
LHS = tanA/2 + tanB/2 + tanC/2
= [(s-b)(s-c)/∆]
+ [(s-c)(s-a)/∆]
+ [(s-a)(s-b)/∆]
=[(s²-cs-bs+bc)+(s²-as-cs+ac)+(s²-as-bs+ab)]/∆
=(3s²-2as - 2bs - 2cs + bc + ca + ab )/∆
= [ bc + ca + ab + 3s² - 2s( a + b + c )]/∆
= [ bc + ca + ab + 3s² - 2s(2s) ]/∆
= ( bc + ca + ab + 3s² - 4s² ]/∆
= ( bc + ca + ab - s² )/∆
= RHS
•••••
Answered by
0
HELLO DEAR,
Answer:
Step-by-step explanation:
tanA/2 + tanB/2 + tanC/2
=> [(s-b)(s-c)/∆]
+ [(s-c)(s-a)/∆]
+ [(s-a)(s-b)/∆]
=> [(s²-cs-bs+bc)+(s²-as-cs+ac)+(s²-as-bs+ab)]/∆
=> (3s²-2as - 2bs - 2cs + bc + ca + ab )/∆
=> [ bc + ca + ab + 3s² - 2s( a + b + c )]/∆
=> [ bc + ca + ab + 3s² - 2s(2s) ]/∆
=> ( bc + ca + ab + 3s² - 4s² ]/∆
=> ( bc + ca + ab - s² )/∆
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions