Math, asked by juliya1343, 1 year ago

In ΔABC, right angle is at B, AB = 5 cm and ∠ACB = 30°. Determine the lengths of the sides BC and AC.

Answers

Answered by mysticd
3
It is given that ,

In ∆ABC , <B = 90°

<ACB = 30°

i ) tan <ACB = AB/BC

tan 30° = 5/BC

( 1/√3 ) = 5/BC

BC = 5√3

ii ) Sin <ACB = AB/AC

sin 30° = 5/AC

1/2 = 5/AC

AC = 5 × ( 2/1 )

AC = 10

Therefore ,

AC = 10 and BC = 5/√3

I hope this helps you.

: )

Attachments:
Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
3

\sf\circ \: {One  \: angle  \: is \:  given  \: and \:  two}\\ \sf{sides \:  are  \: not \: given.}

\sf\circ \: {You \:  cannot \:  use \:  Pythagoras \:  theorem} \:  \red✘

\sf\circ \: {Use \:  trigonometric \:  ratios} \: \red✔

 \\

{\color{orange}{\textsf{\textbf {❥ {\underline{\underline{Solution:}}}}}}}\\

\frak{Sin \: 30=\frac{opp  \: side}{hyp}}\\

\sf\frac{1}{2} = \frac{AB}{AC}\\ \\\sf\frac{1}{2} = \frac{5}{AC} \\\\{\underline{\boxed{\bf\red{AC = 10\:cm}}}}

\sf\implies(how \:  to \:  find  \: BC  \: ? \:  you \:  can  \: either \:  use \\ \sf Pythagoras  \: theorem \:  or \:  trigonometric \:  ratios)

\\\frak{Cos \: 30=\frac{adjacent  \: side}{Hyp}}\\

\sf\frac{\sqrt{3} }{2} = \frac{BC}{AC}\\

\sf\frac{\sqrt{3}}{2} = \frac{BC}{10}\\

\sf{2 \times BC  = 10\sqrt{3}}\\

\sf \: BC =\frac{{\cancel{10}^{ \:  \red5} } \sqrt{3} }{\cancel2}\\

{\underline{\boxed{\bf\red{BC = 5 \sqrt{3}}}}}

Attachments:
Similar questions