In∆ABC right angled at B, angle A=angle C. Find the value of sinA.sinB+cosA.cosB
Answers
Answered by
38
____________________________________________________________
Hey mate !!
Here's your answer !!
Since ∠ A = ∠ C
It must be an Isosceles Triangle.
So, ∠ A + ∠ B + ∠ C = 180°
= 2 ∠ A + 90° = 180°
= 2 ∠ A = 180° - 90° = 90°
= ∠ A = 90° ÷ 2 = 45 °
=> ∠ A = ∠ C = 45°
So Sin A = Sin 45 = 1 / √2
Sin B = Sin 90 = 1
So Sin A × Sin B = 1 / √2 × 1
= 1 /√2
Cos A = Cos 45 = 1 / √2
Cos B = Cos 90 = 0
So Cos A × Cos B = 1 / √2 × 0
= 0
So Sin A × Sin B + CosA × Cos B = 1 / √2 + 0
= 1 / √2
Hope this helps !!
Cheers !!
____________________________________________________________
#Kalpesh :)
Hey mate !!
Here's your answer !!
Since ∠ A = ∠ C
It must be an Isosceles Triangle.
So, ∠ A + ∠ B + ∠ C = 180°
= 2 ∠ A + 90° = 180°
= 2 ∠ A = 180° - 90° = 90°
= ∠ A = 90° ÷ 2 = 45 °
=> ∠ A = ∠ C = 45°
So Sin A = Sin 45 = 1 / √2
Sin B = Sin 90 = 1
So Sin A × Sin B = 1 / √2 × 1
= 1 /√2
Cos A = Cos 45 = 1 / √2
Cos B = Cos 90 = 0
So Cos A × Cos B = 1 / √2 × 0
= 0
So Sin A × Sin B + CosA × Cos B = 1 / √2 + 0
= 1 / √2
Hope this helps !!
Cheers !!
____________________________________________________________
#Kalpesh :)
Steph0303:
Sorry for making it lengthy
Similar questions