Math, asked by rajputayushsingh90, 4 months ago

in ∆ABC, right angled at C, if tan A= 1/√3 find the value of sin A. cosB+cosA.sinB​

Answers

Answered by Anonymous
2

Answer:

Given: parllelogram ABCD circumscribe a circle

To prove: we know that pain syndrome from the extent part are equal in length.

AP=AS-------1

BP=BQ-------2

CR=CQ-------3

DR=DS-------4

Adding 1,2,3 and 4

AP+BP+CR+DR=AS+BQ+CQ+DS

AB+CD=AD+BC-------5

ABCD is a parllelogram

AB=CD

----------6

AD=BC

From 3 and 6 we get

AB+AB=AD+AD

2AB=2AD

AB=AD

If adjacent sides of parllelogram are equal then it becomes rhombus.

Hence ABCD is a Rhombus.

Answered by Anonymous
5

\huge\blue{\mid{\fbox{\tt{ANSWER}}\mid}}

tanA=

3

1

AC

BC

=

3

1

AC=

3

BC

Also, (AC)

2

+(BC)

2

=(AB)

2

3(BC)

2

+(BC)

2

=(AB)

2

AB=2BC

AB:BC:AC=2:1:

3

sinA=

AB

BC

=

2

1

cosA=

AB

AC

=

2

3

sinB=

AB

AC

=

2

3

cosB=

AB

BC

=

2

1

sinAcosB+cosAsinB=

2

1

×

2

1

+

2

3

×

2

3

=1

Also, sinAcosB+cosAsinB=sin(A+B)

In right angled ΔABC.

A+B+C=180

(C=90

)

A+B=90

sin(A+B)=sin90 =1

Similar questions