In ΔABC, show that .
Answers
Solution :
Step-by-step explanation:
LHS = sin²A/2+sin²B/2+sin²C/2
= (1-cosA)/2+(1-cosB)/2+(1-cosC)/2
= 3/2-1/2[cosA+cosB+cosC]
=3/2-1/2[2cos(A+B)/2cos(A-B)/2+1-2sin²C/2
=3/2-1/2[1+2sinC/2cos(A-B)/2-2sin²C/2]
=3/2-1/2[1+2sinC/2{cos(A-B)/2-sinC/2}
=3/2-1/2[1+2sinC/2{cos(A-B)/2-cos(A+B)/2}
= 3/2-1/2[1+2sinC/2(2sinA/2sinB/2)]
= 3/2-1/2[1+4sinA/2sinB/2sinC/2]
= 3/2-1/2[1+(4RsinA/2sinB/2sunC/2)/R]
= 3/2-1/2[1 + r/R]
= 3/2 - 1/2 - r/2R
= 1 - r/2R
= RHS
•••••
HELLO DEAR,
Answer:
Step-by-step explanation:
sin²A/2 + sin²B/2 + sin²C/2
= (1 - cosA)/2 + (1-cosB)/2 + (1 - cosC)/2
= 3/2 - 1/2[cosA + cosB + cosC]
=3/2 - 1/2[2cos(A+B)/2cos(A-B)/2+1-2sin²C/2
=3/2 - 1/2[1+2sinC/2cos(A-B)/2-2sin²C/2]
=3/2 - 1/2[1+2sinC/2{cos(A-B)/2-sinC/2}
=3/2 - 1/2[1+2sinC/2{cos(A-B)/2-cos(A+B)/2}
= 3/2 - 1/2[1 + 2sinC/2(2sinA/2sinB/2)]
= 3/2 - 1/2[1+4sinA/2sinB/2sinC/2]
= 3/2 - 1/2[1 + (4RsinA/2sinB/2sunC/2)/R]
= 3/2 - 1/2[1 + r/R]
= 3/2 - 1/2 - r/2R
= 1 - r/2R
I HOPE IT'S HELP YOU DEAR,
THANKS