Math, asked by manavlp007, 6 months ago

In △ABC, the midpoints of the sides AB, BC and AC are X,Y and Z respectively. If

the coordinates of A ,X and Z are (2,1), (3,2) and (2,3) respectively, find the

coordinates of vertices B and C. Also find the coordinates of the midpoint of the side

BC.Thereby, determine the type of triangle formed on joining the midpoints of the

sides.​

Answers

Answered by ItsAswin
0

Answer:

Step-by-step explanation:

Let A=(x  

1

​  

,y  

1

​  

,z  

1

​  

),B=(x  

2

​  

,y  

2

​  

,z  

2

​  

),C=(x  

3

​  

,y  

3

​  

,z  

3

​  

)

From the figure,

x  

1

​  

+x  

2

​  

=2l,y  

1

​  

+y  

2

​  

=0,z  

1

​  

+z  

2

​  

=0,      [midpoint formula]

x  

2

​  

+x  

3

​  

=0,y  

2

​  

+y  

3

​  

=2m,z  

2

​  

+z  

3

​  

=0

and x  

1

​  

+x  

3

​  

=0,y  

1

​  

+y  

3

​  

=0,z  

1

​  

+z  

3

​  

=2n

On solving, we get

x  

1

​  

=l,x  

2

​  

=l,x  

3

​  

=−l,

y  

1

​  

=−m,y  

2

​  

=m,y  

3

​  

=m

and z  

1

​  

=n,z  

2

​  

=−n,z  

3

​  

=n

∴ Coordinates are A(l,−m,n),B(l,m,−n) and C(−l,m,n)

∴  

l  

2

+m  

2

+n  

2

 

AB  

2

+BC  

2

+CA  

2

 

​  

 

=  

l  

2

+m  

2

+n  

2

 

4m  

2

+4n  

2

+4l  

2

+4n  

2

+(4l  

2

+4m  

2

)

​  

 

=8

Similar questions