Math, asked by HermioneMalfoy3373, 11 months ago

In ∆ABC,the perpendicular drawn from C on the hypotenuse,meet the hypotenuse at D. Bisector of angle C meets the hypotenuse at E. Prove that
AD/DB=(AE)^2/(EB)^2

Answers

Answered by stefangonzalez246
31

Proved that,  \frac{AE^2}{BE^2} = \frac{AD}{BD}.

Given

To prove that , \frac{AD}{DB}  = \frac{AE^{2} }{EB^{2}} .

From the figure,

                         Segment CE and CD bisects ∠ACB.

In ΔACB,

               If segment CE bisects ∠ACB.

               \frac{AE}{BE} = \frac{AC}{BC}  

               Squaring on both the sides,

               (\frac{AE}{BE} )^{2}= (\frac{AC}{BC})^{2}

                \frac{(AE)^2}{(BE)^2} = \frac{(AC)^2}{(BC)^2}      

                 \frac{AE^2}{BE^2} = \frac{AC^2}{BC^2} -----> (1)

In ΔACB,

               If segment CD bisects ∠ACB.

                 m∠ACB = 90°

Where, ΔABC ≅ ΔADC ≅ ΔBDC

            In  ΔABC and ΔADC

              \frac{AC}{AB} = \frac{AD}{AC}

              AC^2 = AB × AD -----> (2)

            In ΔABC and ΔBDC

               \frac{BC}{AB} = \frac{BD}{BC}

               BC^2 = BD × AB -----> (3)

From equation (1),

               \frac{AE^2}{BE^2} = \frac{AB. AD}{BD.AB}

               \frac{AE^2}{BE^2} = \frac{AD}{BD}

              \frac{AE^2}{BE^2} = \frac{AD}{BD}

Hence, proved that  \frac{AE^2}{BE^2} = \frac{AD}{BD} .

To learn more...

1. brainly.in/question/2813200

2. brainly.in/question/8757272          

Attachments:
Similar questions