Math, asked by brainlyshacker58, 10 months ago

In ∆ABC, the sides are 6cm, 10cm and 14cm. show that the triangle is obtuse angled with the obtuse angle to 120°.

Answers

Answered by Anonymous
277

\Huge\bigstar\:\:\tt\underline\red{QUESTION}\\\\

In ∆ABC, the sides are 6cm, 10cm and 14cm. show that the triangle is obtuse angled with the obtuse angle to 120°.

\\\\

\Huge\bigstar\:\:\tt\underline\red{DIAGRAM}\\\\

\setlength{\unitlength}{1cm}\begin{picture}(6,8)\linethickness{0.075mm}\put(1, .5){\line(2, 1){3}}\put(4, 2){\line(-2, 1){2}}\put(2, 3){\line(-2, -5){1}}\put(.7, .3){$B$}\put(4.05, 1.9){$A$}\put(1.7, 2.95){$C$}\put(3.2, 2.5){$10 cm$}\put(0.6,1.7){$6 cm$}\put(2.7, 1.05){$14 cm$}\end{picture}\\

  • AB = 14 cm
  • AC = 10 cm
  • BC = 6 cm

Here AB is the longest side. Therefore ∠C is obtuse angle

\\\\

\Huge\bigstar\:\:\tt\underline\red{SOLUTION}\\\\

\sf\underline\pink{By\:using\:COS\: formula\:for\:\angle C}\\\\

\Large\purple{\longrightarrow\:\:}\large\sf\purple{c^{2} \:=\:a^{2}\:+\:b^{2}\:-\:2ab\:cos(c)}

\Large\green{\longrightarrow\:\:}\large\sf\green{2ab\:cos(c)\:=\:a^{2}\:+\:b^{2}\:-\:c^{2}}

\Large\purple{\longrightarrow\:\:}\large\sf\purple{cos(c)\:=\:\frac{a^{2}\:+\:b^{2}\:-\:c^{2}}{2ab}}

\Large\green{\longrightarrow\:\:}\large\sf\green{cos(c)\:=\:\frac{(6)^{2}\:+\:(10)^{2}\:-\:(14)^{2}}{2\:×\:6\:×10}}

\Large\purple{\longrightarrow\:\:}\large\sf\purple{cos(c)\:=\:\frac{36\:+\:100\:-\:196}{120}}

\Large\green{\longrightarrow\:\:}\large\sf\green{cos(c)\:=\:\frac{-60}{120}}

\Large\purple{\longrightarrow\:\:}\large\sf\purple{cos(c)\:=\:\frac{-1}{2}}

\Large\green{\longrightarrow\:\:}\large\sf\green{c\:=\:\frac{1}{cos}×\frac{-1}{2}}

\Large\purple{\longrightarrow\:\:}\large\sf\purple{c\:=\:cos^{-1}\:(\frac{-1}{2})}

\Large\green{\longrightarrow\:\:}\large\sf\green{c\:=\:\pi\:-\:\frac{\pi}{3}}

\Large\purple{\longrightarrow\:\:}\large\sf\purple{c\:=\:\frac{(3\pi\:-\:\pi)}{3}}

\Large\green{\longrightarrow\:\:}\large\sf\green{c\:=\:\frac{2\pi}{3}}

\Large\purple{\longrightarrow\:\:}\Large\sf\purple{c\:=\:\frac{2\:×\:180}{3}}

\Large\green{\longrightarrow\:\:}\Large\sf\green{c\:=\:2\:×\:60}

\Large\orange{\longrightarrow\:\:}\Large\sf\orange{\angle C\:=\:120°}

\\

\Large\star\: \sf\underline\pink{It\:Will\:Be\: Obtuse\:Angled\: Triangle\:of\:120°}

Answered by silentlover45
6

\large\underline\mathrm\red{Given:-}

  • a = 6
  • b = 10
  • c = 14

\large\underline\mathrm\pink{Long \: c \: will \: be \: largest \: obtuse.}

\large\underline\mathrm\red{Solution}

\impliescos c = a² + b² - c² / 2ab

\implies36 + 100 - 196 / 2 × 6 × 10

\implies- 60/ 120

\implies- 1/2

\impliescos c = -1/2

\impliesc = cos^-1 (-1/2)

\impliesπ - π/3

\implies2π/3

\implies2 × 180/3

\implies120°

\large\underline\mathrm\red{c \: = \: 120°}

______________________________________

Attachments:
Similar questions