Math, asked by smriti9419, 1 year ago

In adjacent figure, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR > ∠PSQ.

Answers

Answered by nandanv99
17

Answer:


Step-by-step explanation:

Given:

PR > PQ & PS bisects ∠QPR


To prove:

∠PSR > ∠PSQ


Proof:

∠PQR > ∠PRQ — (i) (PR > PQ as angle opposite to larger side is larger.)


∠QPS = ∠RPS — (ii) (PS bisects ∠QPR)


∠PSR = ∠PQR +∠QPS — (iii)

(exterior angle of a triangle equals to the sum of opposite interior angles)


∠PSQ = ∠PRQ + ∠RPS — (iv)

(exterior angle of a triangle equals to the sum of opposite interior angles)


Adding (i) and (ii)

∠PQR + ∠QPS > ∠PRQ + ∠RPS


⇒ ∠PSR > ∠PSQ [from (i), (ii), (iii) and (iv)]


nandanv99: please mark as brainliest
Answered by Anonymous
7

Hello mate =_=

____________________________

Solution:

PR>PQ              (Given)

⇒∠PQR>∠PRQ             ....... (1)

(In any triangle, the angle opposite to the longer side is larger.)

We also have ∠PQR+∠QPS+∠PSQ=180°      (Angle sum property of triangle)     

⇒∠PQR=180°−∠QPS−∠PSQ             ......(2)

And, ∠PRQ+∠RPS+∠PSR=180°               (Angle sum property of triangle)          

⇒∠PRQ=180°−∠PSR−∠RPS            ....... (3)

 Putting (2) and (3) in (1), we get

180°−∠QPS−∠PSQ>180°−∠PSR−∠RPS             

We also have ∠QPS=∠RPS, using this in the above equation, we get

−∠PSQ>−∠PSR

⇒∠PSQ<∠PSR

Hence Proved

hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions