Math, asked by malviyasoumya051, 11 months ago

In adjoining figure a ΔABC is rt angled at B. Side BC is trisected at points D and E.Prove that 8AE^2=5AC^2+3AD^2.

Answers

Answered by zelenazhaovaqueen
2

Step-by-step explanation:

ABC is a triangle right angled at B, and D and E are points of trisection of BC.

Let BD = DE = EC = x

Then BE = 2x and BC = 3x

In Δ ABD,

AD² = AB² + BD²

AD² = AB² + x²

In Δ ABE,

AE² = AB² + BE²

AE² = AB² + (2x)²

AE² = AB² + 4x²

In Δ ABC,

AC² = AB² + BC²  

AC² = AB + (3x)²

AC² = AB² + 9x²

Now,

3AC² + 5AD² = 3(AB² + 9x²) + 5(AB² + x²) 

8AB² + 32x²

8(AB² + 4x²)

= 8AE²

⇒ 8AE² = 3AC² + 5AD²

Hence proved.

I hope it will helps you friend

Attachments:

malviyasoumya051: thanks
malviyasoumya051: can i ask yo one more question .
zelenazhaovaqueen: Yes ask dear on brainly
Similar questions