Math, asked by sanjibansarkar2005, 4 months ago

In an A.P. 17th term is 7 more than its 10th term. Find the common difference.

Answers

Answered by SarcasticL0ve
12

{\underline{\underline{\frak{Given\::}}}}\\ \\

  • 17th term of an AP is 7 more than 10th term.

⠀⠀⠀

{\underline{\underline{\frak{To\:Find\::}}}}\\ \\

  • Common difference?

⠀⠀⠀

{\underline{\underline{\frak{Solution\::}}}}\\ \\

\underline{\bigstar\:\boldsymbol{According\:to\:the\: Question\::}}\\ \\

:\implies\sf a_{17} = a_{10} + 7\\ \\

:\implies\sf a + 16d = a + 9d + 7\\ \\

:\implies\sf 16d = 9d + 7\\ \\

:\implies\sf 16d - 9d = 7\\ \\

:\implies\sf 7d = 7\\ \\

:\implies\sf d = \cancel{ \dfrac{7}{7}}\\ \\

:\implies{\boxed{\sf{\purple{d = 1}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\;Common\; difference\;of\;an\;AP\:is\; \bf{1}.}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; \red{a_n + (n - 1)d}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \; \purple{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Sum\;of\;all\;terms\;of\;AP\;having\;last\:term\;as\;'l'\; = \; \pink{ \dfrac{n}{2}(a + l)}

Similar questions
Math, 10 months ago