Math, asked by Anonymous, 4 months ago



In an A.P. a=7, d=3, n= 8 then a =
(a) 28 (b) 38 (©) 18​

Answers

Answered by Anonymous
20

\huge{\blue{\boxed{\green{\underline{\orange{\mathbb{Question✩}}}}}}}

a=7, d=3, n=8 find an term of A.P

(a) 28 (b) 38 (©) 18

\bold{\huge\pink{\boxed{{{answer (a)➺ 28}}}}}

STEP BY STEP SOLUTION :-

 \huge \mathcal \color{maroon}{Given :-}

\\ a \: = 7 \\ d = 3 \:  \:  \\ n = 8 \:

 \huge \mathcal \color{maroon}{To \: find :-}

{}^{a}n = ?

 \huge \mathcal \color{maroon}{Solution :-}

{}^{a} n = a + (n - 1)d \\ (by \: putting \: the \: value \: of \: a,d \: and \: n) \\ ⟹7 + (8 - 1)3 \\ ⟹7 + (7 \times 3) \\ ⟹7 + 21 \:  \:  \:  \:  \:  \:  \\ ⟹an=28 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \huge \mathcal \color{maroon}{Information :- }

Here, \:  \\  \:  \: ➯ \: a=1st \: term \: of \: \: AP \\ ➯ \: d = common \: diffrence \\ ➯ \: n = number \: of \: terms \\ ➯ \:  {}^{a} n = last \: term \\ ➯ \: formula \: used = a + (n - 1)d

Answered by mohit810275133
3

Step-by-step explanation:

HEY MATE.........

given \\  \\ a = 7 \\ d = 3 \: and \:  \\  \\ n = 8 \\  \\  \\ solution \:  \\  \\ by \: using \: an = a + (n - 1)d \\  \\  \\ therefore \\  \\ a8 = a + 7d \\  \\ 7  + 7 \times 3 = 28

HOPE IT HELPS YOU

Similar questions