Math, asked by shardad351, 22 hours ago

In an A.P., if 4th term is 1/6 and 6 th term is 1/4 ,prove that the sum of first 24 terms is 25/2


Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

  • First term of an AP = x

  • Common difference of an AP = d

It is given that,

\rm \: a_4 =  \frac{1}{6}  \\

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm \: a + (4 - 1)d =  \frac{1}{6}  \\

\rm\implies \:\bf\: a + 3d =  \frac{1}{6}  -  -  - (1) \\

Now, further given that

\rm \: a_6 =  \frac{1}{4}  \\

\rm \: a + (6 - 1)d =  \frac{1}{4}  \\

\rm\implies \:\bf \: a + 5d =  \frac{1}{4}   -  -  - (2)\\

On Subtracting equation (2) from equation (1), we get

\rm \: 2d = \dfrac{1}{4}  - \dfrac{1}{6}  \\

\rm \: 2d = \dfrac{3 - 2}{12}  \\

\rm \: 2d = \dfrac{1}{12}  \\

\rm\implies \:\bf \: d = \dfrac{1}{24}  \\

On substituting the value of d in equation (1), we get

\rm \: a + 3 \times  \dfrac{1}{24} =  \dfrac{1}{6}  \\

\rm \: a +\dfrac{1}{8} =  \dfrac{1}{6}  \\

\rm \: a  = \dfrac{1}{6} - \dfrac{1}{8}  \\

\rm \: a  = \dfrac{4 - 3}{24} \\

\rm\implies \:\bf \: a  = \dfrac{1}{24} \\

Now, we have to find sum of first 24 terms of an AP.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the values, we get

\rm \: S_{24}\:=\dfrac{24}{2} \bigg(2 \times  \dfrac{1}{24} \:+\:(24\:-\:1) \times  \dfrac{1}{24}  \bigg) \\

\rm \: S_{24}\:= \: 12 \bigg(\dfrac{1}{12} \:+\:\dfrac{23}{24}  \bigg) \\

\rm \: S_{24}\:= \: 12 \bigg(\dfrac{2 + 23}{24}  \bigg) \\

\rm\implies \:\boxed{ \rm{ \:\bf \: S_{24}\:= \:\dfrac{25}{2} \:  \: }}  \\

Similar questions