Math, asked by saniyamahajan409, 19 hours ago

In an A.P If 5th &12th terms are 30 and 65 respectively. what is the sum of first 20 term ?​

Answers

Answered by navithukulasekara
0

Answer:

Step-by-step explanation:

Hence, the sum of first 20 terms for the given A.P. is 1150

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

  • First term of an AP = a

  • Common difference of an AP = d

Now, it is given that \rm \: 5^{th} term of an AP is 30.

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm \: a_5 = 30 \\

\rm \: a + (5 - 1)d = 30 \\

\rm\implies \:a + 4d = 30 -  -  - (1) \\

Also, given that

\rm \: a_{12} = 65 \\

\rm \: a + (12 - 1)d = 65 \\

\rm\implies \:a + 11d = 65 -  -  - (2) \\

On Subtracting equation (1) from equation (2), we get

\rm \: 7d = 35

\rm\implies \:d \:  =  \: 5 \\

On substituting d = 5, in equation (1), we get

\rm \: a + 4 \times 5 = 30 \\

\rm \: a + 20 = 30 \\

\rm\implies \:a \:  =  \: 10 \\

Now, we have to find sum of first 20 terms.

We have

\rm \: a = 10 \\

\rm \: d = 5 \\

\rm \: n = 20 \\

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

So, on substituting the values, we get

\rm \: S_{20}\:=\dfrac{20}{2} \bigg(2 \:(10)\:+\:(20\:-\:1)\:(5)\bigg)

\rm \: S_{20}\:= \: 10\bigg(20 + 95\bigg) \\

\rm \: S_{20}\:= \: 10 \times 115 \\

\rm\implies \:\boxed{ \rm{ \:\bf \: S_{20}\:= \: 1150 \:  \: }} \\

Similar questions