Math, asked by prout8925, 5 days ago

In an A.P,if a=1,tn=20 and Sn=462,then n is

Answers

Answered by tennetiraj86
10

Step-by-step explanation:

Given :-

In an AP , a = 1 , tn = 20 , Sn = 462

To find :-

The value of n

Solution :-

Given that

In an A.P. , a = 1

tn = 20

Sn = 462

We know that

Sum of the first "n" terms in an A.P.=

Sn = (n/2)(a+tn)

=> 462 = (n/2)(1+20)

=> 462 = (n/2)(21)

=> 462 = 21n/2

=> 462×2 = 21n

=> 924 = 21n

=> 21n = 924

=> n = 924/21

=> n = 44

Therefore, n = 44

Answer :-

The value of n is 44

Check :-

We have,

a = 1

tn = 20

n = 44

We know that

Sum of the first n terms in an A.P

= (n/2)[a+tn]

= (44/2)(1+20)

= 22×21

= 462

Verified the given relations in the given problem.

Used formulae:-

Sum of the first n terms in an A.P

= (n/2)[a+tn]

  • a = First term
  • tn = General or nth term
  • n = Number of terms in the AP.
Answered by Anonymous
19

Given -

In an A.P,

  • a = 1,
  • tn = 20 and
  • Sn = 462

To find -

  • the value of n

Solution -

Recalling the formulas,

  \small{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: \star \:  \: {\bf{S_n =  \frac{n}{2}\{2a + (n - 1)d}\}}}

  \small{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \: \star \:  \: {\bf{t_n =  a + (n -1)d}}}

Here,

  1. a = first term
  2. d = common difference
  3. Sn = Sum of nth terms
  4. tn = nth term

Solving,

  \small{\sf{t_n =  a + (n -1)d}}

  \small{ \implies \:  \: {\sf{20 -1 = (n -1)d}}}

  \small{ \implies \:  \: {\sf{(n -1)d=19}}}

 \small{ \:  \: {\sf{S_n =  \frac{n}{2}\{2a + (n - 1)d}\}}}

Putting (n -1)d = 19,

 \small{ \implies \:  \: {\sf{ 462=  \frac{n}{2}\{2(1) + 19\}}}}

 \small{ \implies \:  \: {\sf{ 462=  \frac{n}{2}(2 + 19)}}}

 \small{ \implies \:  \: {\sf{ 462=  \frac{n}{2}\times21}}}

 \small{ \implies \:  \: {\sf{ 462=  \frac{21n}{2}}}}

 \small{ \implies \:  \: {\sf{ 462\times2=  {21n}}}}

 \small{ \implies \:  \: {\sf{ 21n=924}}}

 \small{ \implies \:  \: {\sf{ n=\frac{\cancel{924}^{44}}{\cancel{21}}}}}

 \small{ \implies \:  \: {\bf{ n=44}}}

Therefore, the value of n = 44.

Similar questions