In an A.P, if an = 4, d = 2 and Sn = - 14, then a =
A) 7
B) - 8
C)-2
D)3
Answers
Answered by
2
Answer:
Given,
an= 4 , d= 2 , Sn= -14
an= a+(n-1)d
=>4= a + (n - 1) 2
=> 4= a+ 2n -2
=> a=4-2n +2
=> [a=6-2n] ---------------(i)
=>Sn = n/2[2a + (n-1)d]
=>-14= n/2[2×(6-2n)+(n-1)d]
=>-14=n/2[12-4n+2n-2]
=>-14=n/2(10-2n)
=>-14×2= n(10-2n)
=>-28=10n-2n^2
=>2n^2-10n+28=0
=>2(n^2-5n+14)=0
=>n^2-5n+14=0
=>n^2-(7-2)n+14=0
=>n^2-7n+2n+14=0
=>n(n-7) + 2(n-7)=0
=>(n-7)(n+2)=0
.
. . n=7 OR n=-2
Now putting the value of n in (i)
=>a=6-2n
=>a=6-2(7)
=>a=-8
OR
=>a=6-2(-2)
=>a=6+4
=>a=10
Similar questions