Math, asked by Pranika0144, 10 months ago

In an A.P., if pth term is 1/q and qth term is 1/p , prove that the sum of first pq terms is 1/2(pq+1), where p is not equal to q..

Answers

Answered by Anonymous
53

 \large\bf\underline{Given:-}

  • pth term = 1/q
  • qth term = 1/p

 \large\bf\underline {To \: prove:-}

sum of first pq terms is 1/2(pq+1)

 \huge\bf\underline{Solution:-}

 \blacktriangleright \bf \large \: a_n = a + (n - 1)d

  • pth term is 1/q

 \rightarrow \rm \: a_p = a + (p - 1)d \\  \\  \rightarrow \rm \: a + (p - 1)d =  \frac{1}{q}........(i)

  • qth term is 1/p

 \rightarrow \rm \:a_q = a + (q - 1)d \\ \\   \rightarrow \rm \: a+(q-1)d=\frac{1}{p}......(ii)

  • Substracting eq.(ii) from (i)

 \rm a + (p - 1)d =  \frac{1}{q}\\  \rm \: a+(q-1)d = \frac{1}{p} \\  - \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - \\   \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \rm \:  \:  \leadsto  \: (p - 1)d - (q - 1)d =  \frac{1}{q}  -  \frac{1}{p}  \\   \rm \:  \:  \:  \:  \:  \:  \:  \leadsto \: pd - d - qd + d =  \frac{p - q}{pq}  \\   \:  \:  \:  \:  \:  \:  \:  \: \rm  \leadsto \: pd - qd =  \frac{p - q}{pq}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm  \leadsto \: (p - q)d =  \frac{p - q}{pq}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm  \leadsto \: d =  \frac{ \cancel{(p - q)}}{pq}  \times  \frac{1}{ \cancel{(p - q)}}  \\    \:  \:  \:  \:  \:  \:  \:  \: \bf \leadsto \: d =  \frac{1}{pq}

Putting value of d = 1/pq in eq.(i)

 \rm  :\implies \: a + (p - 1)d =  \frac{1}{q}  \\  \\  \rm  :\implies \: a + (p - 1) \times  \frac{1}{pq}  =  \frac{1}{q}  \\  \\  \rm  :\implies \: a +  \frac{p}{pq}  -  \frac{1}{pq}  =  \frac{1}{q}  \\  \\  \rm  :\implies \: a +  \frac{1}{q}  -  \frac{1}{pq}  =  \frac{1}{q}  \\  \\  \rm  :\implies \: a =  \cancel \frac{1}{q}  -   \cancel\frac{1}{q}  +  \frac{1}{pq}  \\  \\  \bf:\implies \: a =  \frac{1}{pq}

  • So, a = 1/pq and d = 1/pq

 \large \blacktriangleright \bf \: S_n= \frac{n}{2} [2a + (n - 1)d]

Sum of 1st pq terms :-

 \rm  \dashrightarrow \: S_{pq}   = \frac{pq}{2}  [2 \times  \frac{1}{pq}  + (pq - 1) \times  \frac{1}{pq} ] \\  \\  \rm  \dashrightarrow \: S_{pq} = \frac{pq}{2}  [ \frac{2}{pq}  + \frac{pq}{pq} -  \frac{1}{pq}  ] \\  \\  \rm  \dashrightarrow \: S_{pq} = \frac{pq}{2}  [ \frac{2  + pq- 1}{pq} ] \\  \\  \rm  \dashrightarrow \: S_{pq} =  \frac{pq}{2} [ \frac{1 + pq}{pq} ] \\  \\  \rm  \dashrightarrow \: S_{pq} =  \frac{ \cancel{pq}}{2} \{ \frac{1 + pq}{ {\cancel{pq}}}  \} \\  \\  \bf  \dashrightarrow \: S_{pq} =  \frac{1}{2} \{ pq + 1\}

Hence proved that the sum of first pq terms is 1/2(pq+1), where p is not equal to q.

Answered by Anonymous
11

\sf\orange{Given:}

\sf{\implies{t_{p}=\frac{1}{q}}}

\sf{\implies{t_{q}=\frac{1}{p}}}

\sf{\implies{p \ is \ not \ equal \ to \ q}}

\sf\pink{To \ prove:}

\sf{S_{pq}=\frac{1}{2}(pq+1)}

\sf\green{\underline{\underline{Proof:}}}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{t_{p}=a+(p-1)d}}

\sf{\therefore{\frac{1}{q}=a+(p-1)d}}

\sf{\therefore{a+(p-1)d=\frac{1}{q}...(1)}}

\sf{t_{q}=a+(q-1)d}

\sf{\therefore{\frac{1}{p}=a+(q-1)d}}

\sf{\therefore{a+(q-1)d=\frac{1}{p}...(2)}}

\sf{Subtract \ equation (1) \ from \ equation (2)}

\sf{a+(q-1)d=\frac{1}{p}}

\sf{-}

\sf{a+(p-1)d=\frac{1}{q}}

_________________________

\sf{(q-1)d-(p-1)d=\frac{1}{p}-\frac{1}{q}}

\sf{\therefore{d(q-1-p+1)=\frac{q-p}{qp}}}

\sf{\therefore{d(q-p)=\frac{p-q}{qp}}}

\sf{\therefore{d=\frac{p-q}{qp}\times\frac{1}{p-q}}}

\sf{\therefore{d=\frac{1}{qp}}}

\boxed{\sf{\therefore{d=\frac{1}{pq}...(3)}}}

\sf{Substitute \ d=\frac{1}{pq} \ in \ equation (1)}

\sf{a+(p-1)\times\frac{1}{pq}=\frac{1}{q}}

\sf{\therefore{a+\frac{(p-1)}{pq}=\frac{1}{q}}}

\sf{\therefore{a=\frac{1}{q}-\frac{(p-1)}{pq}}}

\sf{\therefore{a=\frac{p-(p-1)}{pq}}}

\sf{\therefore{a=\frac{p-p+1}{pq}}}

\boxed{\sf{\therefore{a=\frac{1}{pq}...(4)}}}

_________________________________

\boxed{\sf{S_{n}=\frac{n}{2}[2a+(n-1)d]}}

\sf{\therefore{S_{pq}=\frac{pq}{2}[2a+(pq-1)d]}}

\sf{But, \ a=\frac{1}{pq} \ and \ d=\frac{1}{pq}}

\sf{....from \ (3) \ and \ (4)}

\sf{\therefore{S_{pq}=\frac{pq}{2}[\frac{2}{pq}+(pq-1)\times\frac{1}{pq}]}}

\sf{\therefore{S_{pq}=\frac{pq}{2}[\frac{2}{pq}+\frac{pq-1}{pq}]}}

\sf{\therefore{S_{pq}=\frac{pq}{2}[\frac{2+(pq-1)}{pq}]}}

\sf{\therefore{S_{pq}=\frac{1}{2}(2+pq-1)}}

\sf{\therefore{S_{pq}=\frac{1}{2}(pq+1)}}

\sf{Hence, \ proved.}

\sf\purple{\tt{Sum \ of \ first \ pq^{th} \ term \ is \ \frac{1}{2}(pq+1).}}

Similar questions